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A B S T R A C T   

The effective management of water resources is essential to environmental stewardship and sustainable devel
opment. Traditional approaches to water resource management (WRM) struggle with real-time data acquisition, 
effective data analysis, and intelligent decision-making. To address these challenges, innovative solutions are 
required. Artificial Intelligence (AI) and Big Data Analytics (BDA) are at the forefront and have the potential to 
revolutionize the way water resources are managed. This paper reviews the current applications of AI and BDA in 
WRM, highlighting their capacity to overcome existing limitations. It includes the investigation of AI technol
ogies, such as machine learning and deep learning, and their diverse applications to water quality monitoring, 
water allocation, and water demand forecasting. In addition, the review explores the role of BDA in the man
agement of water resources, elaborating on the various data sources that can be used, such as remote sensing, IoT 
devices, and social media. In conclusion, the study synthesizes key insights and outlines prospective directions 
for leveraging AI and BDA for optimal water resource allocation.   

1. Introduction 

Effective management of water resources plays a vital role in 
ensuring their availability and quality for human and environmental 
needs [1]. Managing water resources effectively is critical to promoting 
sustainable development, reducing water-related conflicts, and pro
tecting water ecosystems. It involves the efficient use of water resources 

and the protection of water resources from degradation, pollution, and 
overuse [2]. 

The management of water resources is a complex and challenging 
task, which requires to integrate different disciplines and consider a 
wide range of factors, including water quality and quantity, environ
mental impacts, social and economic factors, and climate change [3]. A 
number of obstacles have hindered the efficacy of conventional 
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approaches to water resource management (WRM). For instance, rapid 
population growth and urbanization raise the demand for urban water 
resources. Conventional systems frequently struggle to meet this 
increased demand, resulting in water scarcity and quality problems. 
Moreover, changing climate patterns, such as altered precipitation and 
an increase in the frequency of extreme weather events, disrupt the 
predictability of water supply. Traditional management techniques may 
not be able to handle the resulting uncertainty. In addition, ineffective 
land management can result in several issues, including soil erosion, 
deforestation, and the disappearance of wetlands. These ecosystems play 
a vital role in moderating the flow and quality of water, and their 
degradation can exacerbate inundation and diminish water storage ca
pacity. Furthermore, water pollution is caused by industrial discharges, 
agricultural effluent, inadequate wastewater treatment, etc [4,5]. 
Managing and mitigating the negative effects of contaminants on water 
quality is typically difficult with conventional methods [6]. Ineffective 
agricultural practices and obsolete irrigation techniques result in 
excessive water loss [7,8]. Conventional approaches neither adequately 
promote water conservation practises nor incentivize the adoption of 
new technologies. Various sectors such as agriculture, industry, and 
municipalities frequently manage water resources independently. This 
fragmented approach can lead to resource allocation conflicts and 
hinder overall sustainability. Moreover, numerous water supply and 
distribution systems are obsolete and insufficient to meet contemporary 
demands. Maintaining and modernizing this infrastructure necessitates 
substantial expenditures, which can strain traditional management 
budgets. Effective water managemet requires the participation of 
numerous stakeholders, such as local communities, governments, in
dustries, and environmental organizations. It is possible that conven
tional methods do not prioritize inclusive decision-making processes. 

Moreover, management of water requires traversing intricate legal 
and regulatory frameworks. Outdated or contradictory regulations can 
impede the implementation of adaptive management strategies and 
innovative solutions. Accurate information on water availability, qual
ity, and consumption is essential for making informed decisions. For an 
effective management, conventional approaches may lack comprehen
sive monitoring systems that provide real-time data. More importantly, 
because of contending budget priorities, conventional strategies may 
encounter financial constraints. Limited financial resources can impede 
investment in cutting-edge technologies and infrastructure upgrades. 

In response to these challenges, new and innovative approaches to 
WRM are needed. Artificial Intelligence (AI) and Big Data Analytics 
(BDA) offer significant potential to improve it by providing real-time 
data, efficient data analysis, and data-driven decision-making [9]. 
These technologies have the potential to transform the way WRM is 
performed and support the development of sustainable and effective 
water management practices [10]. 

AI provides real-time monitoring and analysis of water resources, 
which can support data-driven decision-making and optimization of 
water allocation and demand forecasting [11]. For example, machine 
learning algorithms can be used to predict water quality and allocate 
water resources based on real-time data [12]. Deep learning algorithms 
can be used to analyze vast amounts of data collected from various 
sources to identify trends, patterns, and potential risks in WRM [13]. 
BDA provides new insights into WRM by leveraging the vast amounts of 
data generated by and gathered from various sources, such as remote 
sensing, Internet of Things (IoT) devices, and social media [14]. BDA can 
be used to support WRM by improving the accuracy and efficiency of 
data analysis, identifying new data sources, and providing new insights 
into this issue [15]. The integration of AI and BDA into WRM can sup
port sustainable and effective practices, promote water security, and 
protect water ecosystems. The utilization of these technologies has the 
potential to transform the way WRM is performed and provide innova
tive solutions to the challenges that may appear in this domain [16]. 

The purpose of this review is to spotlight the latest innovative ave
nues for the utilization of AI and BDA in WRM. The review will cover 

various AI technologies applicable to this domain, such as machine 
learning and deep learning, and different applications of AI in this re
gard, such as water quality monitoring, water allocation, and water 
demand forecasting. The review will also discuss the utilization of BDA 
in WRM, including different data sources that can be leveraged and the 
potential benefits and limitations of these innovations. The review will 
comprehensively review the current state-of-the-art approaches to uti
lizing AI and BDA in WRM and highlight the future directions for 
research and implementation. The next section discusses the main 
challenges in the WRM process. 

2. Challenges arising to water resource management 

2.1. An overview 

Management of water resources is a multifaceted endeavor, which 
requires careful consideration of numerous environmental, social, and 
economic factors [16]. However, conventional approaches to WRM face 
a number of obstacles to their effectiveness and viability. This section 
discusses the current obstacles encountered by these approaches, 
emphasizing the complexity of managing this essential resource. 

2.1.1. Growth of population and urbanization 
The world’s population is expanding swiftly, with a significant 

portion of this growth occurring in urban areas. This transition in pop
ulation increases the demand for water resources to sustain domestic 
industrial and agricultural activities. Conventional systems of water 
management, which have been designed for regions with a low popu
lation density, struggle to meet this rising demand [2]. As a conse
quence, urban centers frequently experience water scarcity, excessive 
exploitation of groundwater, and increased competition between sectors 
for limited water resources. 

2.1.2. Climate change 
WRM now faces unprecedented levels of uncertainty because of 

climate change. Changing precipitation patterns, an increase in the 
frequency of droughts and flooding, and rising temperatures impede the 
ability to predict water availability. In the face of these swiftly altering 
conditions, conventional management practices based on historical data 
and suppositions may prove inadequate. This difficulty necessitates the 
development of adaptive management strategies that can respond 
dynamically to the patterns of climate change [17,18]. 

2.1.3. Ecosystem degradation 
Ecosystems play a crucial role in regulating the quantity and quality 

of water. Nonetheless, human activities such as deforestation, urban 
expansion, and unsustainable agricultural practices have contributed to 
the degradation of these ecosystems. This degradation disrupts natural 
water flow patterns, reduces the capacity to store water, and increases 
the risk of inundation. The insufficient consideration of ecosystem ser
vices in conventional approaches to WRM frequently results in subop
timal outcomes for both humans and the environment [19]. 

2.1.4. Water contamination 
Water contamination is caused by the discharge of pollutants from 

industrial processes, agricultural effluent, and inadequate sanitation 
systems. The complex challenges presented by contaminated water 
sources are frequently neglected by conventional management ap
proaches, which concentrate on water supply and distribution. 
Addressing water pollution necessitates integrating effluent treatment, 
pollution prevention measures, and stringent regulatory frameworks 
into comprehensive strategies [20,21]. 

2.1.5. Wasteful water use 
Particularly in agriculture sector, inefficient water use exacerbates 

water scarcity problems. As a result of their lack of precision and 
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optimization, the use of conventional irrigation techniques result in 
substantial water loss. Conventional management practices may strug
gle to promote the adoption of advanced irrigation technologies and 
water-efficient practices, thereby perpetuating unsustainable patterns of 
water consumption [8]. 

2.1.6. Absence of integrated administration 
The interconnectedness and interdependence of water resources 

transcend sectoral boundaries. However, conventional approaches 
frequently compartmentalize water management, resulting in resource 
allocation conflicts and lost opportunities for synergy. Integrated WRM, 
which takes into account the holistic nature of water systems, is essential 
for attaining sustainable outcomes and harmonizing competing de
mands [19,22]. 

2.1.7. Outdated facilities 
Numerous water supply and distribution systems were created de

cades ago and are ill-equipped to meet contemporary needs. A deterio
rating infrastructure increases the likelihood of water leakage, 
inefficiencies, and service interruptions. Efforts made to improve system 
resiliency and efficiency are hindered by the inability of conventional 
management to secure funding for infrastructure enhancements [13,22]. 

2.1.8. Limited stakeholder participation 
To manage water resources successfully, there is a need for the 

participation of a variety of stakeholders, each with their own per
spectives and objectives. There may be a lack of inclusive decision- 
making processes that adequately account for local communities, in
dustries, environmental organizations, and government agencies in 
conventional approaches. This can result in suboptimal solutions and 
heightened stakeholders tensions [8,23]. 

2.1.9. Legal and compliance obstacles 
The complex web of water-related regulations and legal frameworks 

is a formidable obstacle to overcome the obstacles to managing water 
resources. Ineffective strategies can be impeded by outmoded laws, 
contradictory regulations, and jurisdictional ambiguity. The inability of 
conventional approaches to adapt to changing legal landscapes may 
impede progress and innovation [2]. 

2.1.10. Absence of data and tracking 
To make informed decision in WRM, accurate and current data are 

indispensable. There may be a lack of comprehensive monitoring sys
tems that provide real-time data on water availability, quality, and 
usage in conventional approaches. Inadequate data can lead to subop
timal resource allocation and a diminished capacity to address emergent 
challenges [8]. 

2.1.11. Economic pressures and limited resources 
WRM is frequently hampered by budgetary constraints and 

competing priorities. Investments in infrastructure enhancements, 
cutting-edge technologies, and capacity development may be hampered 
by insufficient financial resources. This difficulty highlights the need for 
innovative financing mechanisms and cost-effective solutions to guar
antee the sustainability of water resources. 

2.1.12. Hydro-energy challenges 
Hydro-energy, derived from the movement of water in rivers and 

structures, plays a crucial role in the generation of global energy [24]. 
However, the incorporation of Hydro-energy into WRM presents 
numerous complex obstacles. This section explores the unique com
plexities of hydro-energy within the context of WRM as a whole. 

Hydro-energy projects, such as dams and reservoirs, frequently 
modify rivers’ ecosystems and water flow patterns. These modifications 
can disrupt aquatic habitats, have an effect on fish migration, and 
diminish sediment transport downstream. Ensuring the sustainability of 

water management practices requires striking a balance between the 
energy potential of Hydro-energy and the preservation of ecosystem 
health [17]. 

Consistent water flow is required for hydroelectric power generation. 
This can result in conflicts between agriculture, industry, and municipal 
water supply. To determine equitable water allocation between energy 
production and other sectors, particularly during water-scarce periods, 
there is a need for robust regulatory frameworks and preparing the stage 
for effective stakeholders’ engagement [25]. 

Seasonal variation and alterations in precipitation patterns have an 
effect on Hydro-energy production. The introduction of uncertainty by 
climate change modifies the timing and availability of water resources. 
Fluctuations in river flow and reservoir levels can impact energy pro
duction, necessitating adaptive strategies to mitigate disruptions [24]. 

Dams and reservoirs contain sediment, resulting in erosion down
stream, decreased sediment delivery, and altered sediment transport 
dynamics. This has an effect on river morphology, aquatic habitats, and 
ecosystems dependent on sediment. It is essential to implement effective 
strategies for sediment management to preserve both energy production 
and ecological integrity [25]. 

Infrastructure for Hydro-energy, such as dams and turbines, must be 
routinely maintained to ensure safe and efficient operation. Aged 
infrastructure is susceptible to deterioration, which may result in safety 
hazards and operational interruptions. When resources are limited, 
balancing the need for maintenance with consistent energy production 
presents challenges. 

Hydro-energy projects can result in the displacement of communities 
and the alteration of local cultures and ways of life. Creation of reser
voirs and alterations to river patterns can have an effect on fisheries, 
agriculture, and traditional practices. To mitigate negative social im
pacts and ensure their participation in decision-making processes, it is 
essential to engage meaningfully with affected communities. The 
development of hydro-energy initiatives necessitates navigating com
plex regulatory procedures, environmental assessments, and permit re
quirements. Achieving a balance between energy requirements and 
environmental protection can result in protracted approval processes 
and potential conflicts among stakeholders with diverse interests. The 
downstream water quality can be impacted by reservoir sedimentation, 
altered flow patterns, and temperature fluctuations. Managing and 
mitigating potential adverse effects on water quality, aquatic life, and 
downstream water users require careful consideration and proactive 
actions [26]. 

At the conclusion of their useful lives, Hydro-energy facilities must 
be decommissioned appropriately. This procedure entails addressing 
potential environmental impacts, restoring river systems, and managing 
lingering infrastructure. To minimize long-term liabilities, it is crucial to 
plan for decommissioning from the start. Hydro-energy technology 
continues to develop, with an emphasis on maximizing efficiency, 
minimizing environmental impacts, and augmenting energy storage 
capacities. A proactive approach is required to integrate these in
novations into existing infrastructure while addressing potential tech
nical and financial obstacles. Hydro-energy is a renewable energy 
source, but its incorporation into water resource management presents a 
number of unique challenges. It is complex to balance the energy pro
duction with ecological, social, and regulatory considerations. To 
address these obstacles; energy developers, regulatory bodies, environ
mental agencies, and affected communities must collaborate to ensure a 
sustainable and equitable approach to the use of hydro-energy in the 
context of WRM as a whole. 

2.2. Enhancing water resource management through AI and big data 
analytics 

WRM has increasingly faced complex obstacles as a result of tech
nological progress. The combination of AI and BDA has emerged as a 
game-changing strategy for optimizing water allocation, usage, and 
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conservation [27]. This section describes how the synergy between AI 
and BDA can transform WRM by facilitating informed decision-making, 
proactive resource management, and sustainable outcomes. 

2.2.1. Decision-making informed by data insights 
AI and BDA provide WRM professionals with an abundance of data- 

driven insights. These technologies combine information from 
numerous sources, including remote sensing satellites, weather stations, 
and sensors, to provide a comprehensive understanding of water dy
namics. Decision-makers obtain real-time information on water avail
ability, quality, usage patterns, and ecosystem health by using 
sophisticated techniques of data analysis. This type of informed 
decision-making is essential for the development of strategies that 
effectively address water scarcity, pollution, and climate-induced vari
ability [28]. 

2.2.2. The use of predictive models for efficient planning 
Modern WRM is based on predictive modeling facilitated by AI. This 

type of modeling uses historical and real-time data to simulate a variety 
of scenarios, predicting the availability of water under varying climate 
conditions and human interventions. Predictive models aid in the 
development of responsive drought mitigation, flood management, and 
optimal reservoir operation strategies. By quantifying the potential 
outcomes of various decisions, planners can proactively adapt to 
changing conditions, thereby minimizing risks and optimizing resources 
[26,29]. 

2.2.3. Effectiveness of water allocation and conservation 
It is essential to optimize water allocation in order to balance the 

needs of agriculture, industry, urban areas, and ecosystems. Algorithms 
powered by AI and fed with real-time data can dynamically adapt water 
distribution to changing conditions. In addition, these technologies can 
identify and correct inefficiencies in water use, for instance, by the 
detection of leaks in distribution networks and the application of precise 
irrigation in agriculture. This not only conserves water, but also in
creases the overall efficacy of water systems [7]. 

2.2.4. Systems for early warning of extreme events 
Extreme weather events, such as floods and droughts, are capable of 

having devastating effects on water resources. Early warning systems 
powered by AI analyze meteorological and hydrological data to forecast 
potential disasters [30,31]. These systems provide significant lead time 
for implementing mitigation measures, evacuating vulnerable areas, and 
allocating emergency response resources. Using real-time data, 
decision-makers can improve community safety and mitigate the effects 
of extreme events on water supply and infrastructure. 

2.2.5. Management and restoration of ecosystems 
AI and BDA bolster ecosystem-based WRM approaches. Using remote 

sensing and data integration techniques, these technologies evaluate the 
health of aquatic and terrestrial ecosystems. These insights guide 
restoration efforts by identifying areas in need of intervention, evalu
ating the influence of restoration projects on water flow and quality, and 
tracking the long-term success of these initiatives. This unified strategy 
promotes both ecological health and sustainable water management 
[32]. 

2.2.6. Engagement with stakeholders and transparency 
Engaging stakeholders is essential for WRM success. By providing 

accessible data platforms, AI and BDA facilitate transparent and inclu
sive decision-making processes. These platforms enable stakeholders, 
including communities, industries, and governments, to access real-time 
data and collaborate on resource management. This promotes confi
dence, reduces conflicts, and encourages participation in conservation 
efforts. 

2.2.7. Adaptive strategies in confrontation with climate change 
Climate change makes WRM more complicated. Climate modeling 

powered by AI forecasts changes in precipitation, temperature, and 
water availability. By incorporating these projections into management 
strategies, decision-makers can develop plans that are adaptable and 
resilient to shifting conditions. The iterative nature of AI enables 
continuous strategy refinement as new data become available [17,18]. 

2.2.8. Compliance and enforcement with regulations 
By automating compliance surveillance, AI and BDA increase regu

latory oversight. These technologies can detect illegal water usage, 
pollution incidents, and other violations rapidly. Large datasets are 
analyzed by machine learning algorithms to identify patterns of 
noncompliance, allowing authorities to take prompt enforcement ac
tions, and deter future violations. 

2.2.9. Drought management 
AI and BDA can be used to support drought management by 

providing real-time data on water availability and usage. For example, 
AI algorithms can be used to analyze data on water usage and avail
ability to determine the most efficient allocation of water resources 
during times of drought [33]. 

2.2.10. Flood management 
AI and BDA can be used to support flood management by providing 

real-time data on water levels and flow rates. For example, AI algorithms 
can be used to analyze data from water level sensors and satellite im
agery to predict and respond to potential floods [29]. 

These are just a few examples of how AI and BDA can be used in 
water resource management. The potential applications of AI and BDA 
in this field are vast, and there is a growing recognition of the need for 
new and innovative approaches to WRM to address the challenges faced 
with in this domain and support sustainable and effective water man
agement practices [34]. The use of AI and BDA in WRM will help to 
ensure that water resources are managed in a sustainable and efficient 
manner [35]. 

3. Innovations in AI for water resource management 

3.1. Different AI-based technologies applicable to water resource 
management 

There are several types of AI technologies applicable to WRM, each 
with their own unique capabilities and limitations. In the following, a 
number of important examples are explained. 

3.1.1. Machine learning 
It is a type of AI that enables computers to learn from data and make 

predictions or decisions based on that learning. In the context of WRM, 
machine learning algorithms can be used to analyze data from water 
quality sensors, water infrastructure, and other sources to detect 
changes in water quality, predict water usage patterns, and improve 
decision-making processes [36]. 

3.1.2. Deep learning 
It is a subset of AI, which has emerged as a potent technique for 

deciphering complex patterns and making accurate predictions from 
massive datasets. Deep Learning offers an innovative approach to 
addressing challenges associated with water availability, quality, dis
tribution, and ecological health in the domain of WRM. This subsection 
discusses the concept of Deep Learning in WRM, detailing its prospective 
applications and advantages. 

Deep Learning is an AI subfield inspired by the structure and function 
of the neural networks in the human brain. These networks comprise 
layers of artificial neurons, which process and transform data and are 
interconnected [37–39]. Deep Learning models, specifically CNNs and 
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RNNs, excel at identifying complex patterns in images, sequences, and 
time-series data [40,41]. 

Deep Learning algorithms are capable of analyzing large datasets of 
water quality parameters (e.g., temperature, pH, and contaminants) to 
detect pollution incidents and identify trends over time. Models can 
predict hazardous algal blooms, chemical contamination, and bacterial 
outbreaks, facilitating in the protection of public health through early 
intervention [42]. 

Additionally, Deep Learning can analyze historical and real-time 
data on rainfall, river levels, and topography to generate accurate 
flood prediction models. By identifying prospective flood-prone areas 
and anticipating extreme events, local authorities would be able to 
implement evacuation plans in a timely manner and deploy resources 
effectively. 

In addition, Deep Learning models can process satellite imagery and 
climate data to monitor plant health and soil moisture levels during a 
drought. These insights aid in the early detection of drought, guiding 
efficient water allocation, cultivation planning, and WRM during pe
riods of water scarcity [18]. 

Deep Learning algorithms can analyze patterns of water consump
tion in urban areas, taking into consideration variables such as weather, 
demographics, and economy. Accurate water demand forecasts allow 
utilities to optimize water distribution and plan infrastructure in
vestments. Deep Learning techniques can improve hydrological models 
through the incorporation of large datasets from remote sensing, 
weather forecasts, and ground-based sensors [43]. These models 
enhance the knowledge of watershed dynamics, streamflow forecasts, 
and reservoir operations [15]. 

Deep Learning also excels at recognizing complex patterns in large 
datasets, uncovering insights that conventional methods may overlook. 
It can fuse disparate data sources such as satellite imagery, sensor 
measurements, and social media data to provide an all-encompassing 
view of water systems. Moreover, Deep Learning models can predict 
future water-related events with a higher degree of precision, facilitating 
proactive management strategies. Once trained, Deep Learning models 
can automate data analysis, which enables real-time decision making 
and reduces manual labor. 

The involvement of Deep Learning in WRM is likely to increase as 
data availability and computational resources continue to grow. Re
searchers are striving to enhance the interpretability of models, resolve 
data limitations, and develop hybrid approaches that combine AI with 
conventional hydrological models. The incorporation of Deep Learning 
into WRM has the potential to facilitate more precise, expeditious, and 
proactive management of water resources, thereby contributing to a 
sustainable water future [44]. 

3.1.3. Natural language processing (NLP) 
This is a type of AI that enables computers to understand and process 

the human language. In the context of WRM, NLP can be used to process 
unstructured data such as social media posts to monitor public opinions 
and attitudes toward WRM [45]. 

3.1.4. Computer vision 
It is a type of AI that enables computers to process and understand 

images and videos. In the context of water resource management, 
computer vision can be used to analyze satellite imagery and other 
images to monitor changes in water availability, water usage, and water 
quality [19]. 

3.1.5. Predictive analytics 
Predictive analytics is a type of AI that uses machine learning algo

rithms to analyze data and make predictions about future events or 
trends. In the context of WRM, predictive analytics can be used to pre
dict water usage patterns during times of drought, water quality trends, 
and other important metrics [46]. 

The items explained above are some of the most commonly used AI 

technologies in the WRM domain. By understanding the capabilities and 
limitations of each technology, WRM agencies can select the most 
appropriate AI technologies to meet their specific needs and support 
sustainable and effective water management practices. Fig. 1 illustrates 
AI and related tools applied to WRM. 

3.2. The applications of AI in water resource management 

By utilizing AI and big data analytics, WRM agencies can improve 
their decision-making processes, optimize their water management 
practices, and ensure a sustainable and equitable supply of water. 

AI technologies, such as machine learning algorithms and predictive 
analytics, can analyze large amounts of data to identify patterns and 
make predictions accordingly. This information can be used to improve 
the accuracy of water management processes, such as water allocation 
and demand forecasting [25]. 

Furthermore, AI can be used to monitor water quality in real-time 
(Fig. 2) and alert WRM agencies of any changes in this parameter. 
This information can be used to make informed decisions about water 
management practices and to protect water ecosystems [47]. 

Moreover, AI can be used to optimize water allocation, by analyzing 
data from water resources, water usage patterns, and other sources. This 
information can be used to make informed decisions about water man
agement practices and to allocate water resources more efficiently and 
equitably [49]. 

AI technologies can also be used to detect leaks and other in
efficiencies in water infrastructure. This information can be used to 
reduce wastewater and to optimize water usage patterns [50]. 

Additionally, AI can be used to predict water demand based on data 
from water infrastructure, water usage patterns, and other sources. It 
helps authorities make informed decisions regarding water management 
practices and supply water sustainably and equitably [51]. 

Table 1 summarizes the application of AI in WRM. By leveraging the 
capabilities of AI and BDA, WRM agencies can make more informed 
decisions, optimize their water management practices, and ensure a 
sustainable and equitable supply of water for communities and 
ecosystems. 

4. Innovations in BDA for water resource management 

4.1. Big data analytics in water resource management 

BDA is an important tool for WRM, as it allows WRM agencies to 
analyze a large number of data and make informed decisions [63]. Some 
of the innovative ways in which BDA can be applied to WRM include. 

4.1.1. Real-time monitoring of water resources 
BDA can be used to monitor water resources in real-time, and to track 

changes in water quality, water allocation, and water demand. This in
formation can be used to make informed decisions about water man
agement practices [64]. 

4.1.2. Optimizing water allocation 
BDA can be used to analyze water usage patterns and other data 

sources to optimize water allocation. This can help to allocate water 
resources more efficiently and equitably [23]. 

4.1.3. Improving water demand forecasting 
BDA can be used to predict water demand based on data from water 

infrastructure, water usage patterns, and other sources. This information 
can be used to make informed decisions about water management 
practices and to ensure a sustainable and equitable supply of water [65]. 

4.1.4. Detecting wastewater 
BDA can be used to detect leaks and other inefficiencies in water 

infrastructure. This information can be used to reduce wastewater and to 
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optimize water usage patterns [66]. 4.1.5. Enhancing water quality monitoring 
BDA can be used to monitor water quality and to identify patterns 

and make predictions about changes in this parameter. It can help to 

Fig. 1. AI for water resources management.  

Fig. 2. Real-time monitoring and prediction of water quality (Reproduction with permission from Ref. [48]).  
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make informed decisions about water management practices and to 
protect water ecosystems [67]. 

The use of BDA in WRM can help WRM agencies to make more 
informed decisions, optimize their water management practices, and 
ensure a sustainable and equitable supply of water for communities and 
ecosystems [68]. These application are summarized in Table 2. 

4.2. Different data sources that can be leveraged in water resource 
management 

In water resource management, there are various data sources that 
can be leveraged to support decision-making and optimize water man
agement practices. Some of the most common data sources include: 

4.2.1. Remote sensing 
Remote sensing technologies, such as satellites and unmanned aerial 

vehicles, can be used to gather information about water resources and 
water ecosystems. This information can be used to monitor changes in 

water quality, water allocation, and water demand and to make 
informed decisions about water management practices [32]. 

4.2.2. IoT devices 
The increasing availability of IoT devices, such as sensors and smart 

meters, can aid in gathering information about water usage patterns and 
water infrastructure. This information can be used to monitor water 
usage patterns, detect leaks and inefficiencies, and optimize water 
allocation (Fig. 3) [70]. 

4.2.3. Social media 
Social media platforms, such as Twitter and Facebook, can be used to 

gather information about water usage patterns and water quality. For 
example, communities can use social media to report water outages, 
leaks, and other issues, which can then be used by WRM agencies to 
respond more effectively [71]. 

4.2.4. Hydrological models 
These models can be used to simulate the flow and quality of water in 

water systems. These models can be informed by data from remote 
sensing, IoT devices, and other sources to make more accurate pre
dictions about water usage patterns and water quality [72,73]. 

By leveraging these various data sources, WRM agencies could make 
more informed decisions, respond more effectively to water-related is
sues, and ensure a sustainable and equitable supply of water for com
munities and ecosystems. 

5. The applications of AI and BDA in real-scale water resource 
management 

5.1. Integration of AI and BDA into water resource management 

The integration of AI and BDA into water resource management has 

Table 1 
The application of AI in WRM.  

Application Input Algorithm Sample Size Ref. 

Prediction of 
water 
quality 

pH, Dissolved 
oxygen, Nitrate, 
BOD, Conductivity, 
Fecal coliform, and 
Total coliform 

MLP, DT, SVM, 
LR, RF, 
XGBoost, and 
CATBoost 

1679 [52] 

Prediction of 
water 
quality 

pH, AMN, BOD, 
MRP, DOX, TON, 
SAL, TRAN, CHL, 
and TEMP 

KNN, SVM, DT, 
RF, LR, XGB, 
ExT, and GNB 

– [53] 

Dissolved 
Oxygen 
prediction 

DO LSTM 236 [54] 

Algal bloom 
prediction 

BOD, COD, TSS, and 
TOC 

ANFIS 896 [55] 

Prediction of 
TP, TRP, 
NH4–N, 
NO3–N 

Chlorophyll-a, 
temperature, pH, 
DO, EC, flow rate, 
and turbulence 

RF 21657 [56] 

Water 
pollution 
monitoring 

Water images ANN 1000 [57] 

Prediction of 
water 
quality 

DO, pH, NH3–N, and 
CONMn 

RF, DT, and 
DCF 

33612 [27] 

Dissolved 
Oxygen 
prediction 

DO, temperature, 
Cl, pH, NOx, and 
TDS 

CCNN 232 [58] 

Heavy Metal 
Assessment 

Cr, Cu, Zn, Mn, Cd, 
Pb, Co, and Ni 

PCA 42 [59] 

Chlorophyll-a 
prediction 

Chlorophyll-a, 
temperature, 
PO4–P, NO3–N, 
NH3–N, wind speed, 
and solar radiation 

ANN and SVM 357 [26] 

TP and TN 
prediction 

TP, TN, DO, 
temperature, river 
flow, rainfall, and 
flow travel time 

ANN and SVM 660 [60] 

Leakage 
detection 

Not Available RNN and LSTM Actual data 
(59 days) 

[61] 

Water demand 
forecast 

Maximum 
Temperature 
Celsius (◦C), 
Average 
Temperature 
Celsius (◦C), 
Humidity 
Percentage (%), 
Wind speed 
Kilometer/hour, 
and Pressure 
Millibar Rainfall 

Linear 
Regression 
Model, 
Decision Tree 
Model, 
SVM, KNN, 
Random Forest, 
XGBoost, 
ARIMA, ANN, 
and LSTM 

Data were 
gathered 
from January 
2020 to 
October 
2021 

[62]  

Table 2 
BDA in water resource management.  

Application Input Data Algorithm Sample 
Size 

Ref. 

Real-time 
monitoring 
of water 
resources 

Temperature, PH, 
Turbidity, DO, 
Conductivity, BOD, 
NI, FC, TC, and WQI 

Refined stochastic 
gradient descent 
(SGD) 

1600 [64] 

Optimizing 
water 
allocation 

Temperature, 
Pressure, Water 
Quality Air Quality, 
and Humidity 

Resource 
provisioning 
methods in cloud- 
based IoT 
environments 

N/A [23] 

Improving 
water 
demand 
forecasting 

Occupation Rate 
(%) 
Av BARs 1 week 
Av BARs 2 week 
Av BARs 3 week 
Av BARs 4 week 
# rooms (nrooms) 
# meeting rooms 
(nmr) 
# restaurant seats 
(nrs) 
Km from city center 
(dist) 
Km from airport 
(dista) 

Smart method based 
on Seasonal Auto- 
Regressive Moving- 
Average (SARIMA) 

274 
Days 

[65] 

Detecting 
wastewater 

DO, COD-Mn, 
NH4–N, and 
Overall water 
quality 

Water Quality 
Identification Index 
(WQII) 

68330 [66, 
69] 

Enhancing 
water 
quality 
monitoring 

Seokseong WTP 
data (Korea) 

Artificial Neural 
Network (ANN) and 
Deep Neural 
Network (DNN) 

42662 [67]  
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been gaining significant attention in recent years. This is due to the 
challenges traditional water resource management practices are faced 
with, including population growth, climate change, and increasing 
water demand, which highlight the need for new and innovative ap
proaches [17]. AI and BDA can provide a valuable tool to support sus
tainable and effective water management practices and protect water 
ecosystems [74,75]. Fig. 4 illustrates an example of how AI can be used 
to manage real-scale water resources. In fact, this figure shows how AI 
can help manage water resources toward environmental sustainability. 

One of the key applications of AI in WRM is the monitoring of water 
quality. AI algorithms can be used to analyze data from various sources, 
including remote sensing, IoT devices, and laboratory tests, to monitor 
water quality in real-time and detect any changes or anomalies in water 
quality [77]. This information can then be used to make informed de
cisions about water treatment and distribution and to respond to 
changes in water quality more quickly and effectively. 

Another important application of AI in this domain is water alloca
tion. AI algorithms can optimize water allocation, ensuring the equitable 
and sustainable distribution of water. This can be done by analyzing 
data from IoT devices [78,79], remote sensing, and other sources to 
make more informed decisions about water usage patterns and water 
demand. For example, AI algorithms can be used to identify areas where 
water usage is higher than average or water quality is lower than ex
pected; they can make recommendations to address these issues [80]. 

Water demand forecasting is another key application of AI in WRM. 
AI algorithms can be used to forecast water demand and predict changes 
in water usage patterns. This information can be used to make informed 
decisions about water allocation and to ensure that there is enough 
water available to meet the communities’ and ecosystems’ requirements 
[81]. By using AI and BDA to forecast water demand, WRM agencies can 
make more informed decisions about water allocation and respond more 
quickly and effectively to changes in water usage patterns [28]. 

Finally, AI and BDA can also be used to monitor and optimize water 
infrastructure, such as pipelines, reservoirs, and treatment plants. For 

example, AI algorithms can be used to detect leaks and inefficiencies in 
pipelines and to make water distribution and treatment processes opti
mized. This can help to reduce water waste, improve water quality, and 
ensure that water is used more efficiently and sustainably [64]. 

In summary, the integration of AI and BDA into water resource 
management provides a valuable tool to support sustainable and effec
tive water management practices. By incorporating these technologies, 
water resource management agencies can make more informed de
cisions, respond more quickly and effectively to water-related issues, 
and ensure a sustainable and equitable supply of water for communities 
and ecosystems [82]. 

5.2. The benefits and limitations 

The utilization of AI and BDA in WRM brings a range of benefits and 
limitations, which must be considered when seeking for effectiveness 
and sustainability in water management practices. One of the key ben
efits of these innovations is that they allow for more efficient and ac
curate monitoring of water resources [36]. This includes the ability to 
monitor water quality, allocate water resources effectively, and forecast 
water demand [22,83,84]. By leveraging various data sources such as 
remote sensing, IoT devices, and social media, AI and BDA can provide 
real-time insights into WRM, which have previously been impossible 
[18]. 

However, despite these benefits, there are also some limitations to be 
considered, too. For example, there are concerns about the accuracy of 
data and how to handle large amounts of data. Additionally, there may 
be challenges in integrating AI and BDA systems into existing water 
resource management practices, which can lead to resistance from 
stakeholders who are accustomed to traditional methods [85]. 
Furthermore, there may be concerns about the potential for AI and BDA 
systems to perpetuate existing biases and discrimination in WRM prac
tices, which is particularly important given the critical nature of water as 
a resource [49]. 

It is therefore important to carefully consider the benefits and limi
tations of these innovations in the WRM context to ensure that they are 
deployed in a manner that supports sustainability and effectiveness of 
water management practices. This can be achieved through the devel
opment of guidelines for the use of AI and BDA in the WRM domain and 
the involvement of relevant stakeholders in the design and imple
mentation of these systems [86]. 

6. Conclusions 

The intersection of AI and BDA has emerged as a beacon of innova
tion, illuminating a path to more effective, adaptive, and sustainable 
water management strategies. This article discussed the most recent and 
prospective applications of these technologies, highlighting their 
transformative potential in addressing the multifaceted complexities of 
water resources. AI and BDA have unveiled a new dimension of data- 
driven decision making, from the unprecedented accuracy of flood 
forecasting to the real-time monitoring of water quality. The ability to 
assimilate vast and disparate datasets from a variety of sources, coupled 
with the computational prowess of AI algorithms, has allowed water 
resource managers to transcend traditional boundaries and delve deeper 
into the complexities of water systems. 

This paper demonstrated the extensive and multifaceted applications 
of AI and BDA in forecasting the availability of water, optimizing allo
cation, and improving infrastructure maintenance. In addition, these 
technologies fill monitoring voids, empower communities, and provide 
previously unavailable information to decision-makers. This investiga
tion into the most recent innovative avenues highlighted the signifi
cance of collaboration between various stakeholders. Researchers, 
policymakers, engineers, and communities must leverage the potential 
of these technologies while maintaining vigilance regarding ethical 
concerns, data privacy, and equitable access to benefits. 

Fig. 3. IoT for water management systems.  
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On the other hand, the process of incorporating AI and BDA into 
WRM is limited with different obstacles. Because of technical com
plexities, data constraints, and the requirement for interdisciplinary 
expertise, it is essential that a concerted effort be made by professionals. 
Nevertheless, the benefits are substantial: a resilient water future that 
navigates the uncertainties of climate change, sustains flourishing eco
systems, and ensures equitable access to this precious resource. 

In conclusion, the focus on these innovative avenues represents a 
paradigm shift in our approach to WRM. With AI and BDA as our guides, 
we embark on a transformational voyage that redefines our under
standing, strategies, and actions regarding the protection of one of the 
most essential resources for life on the Earth. We are poised to leave a 
legacy of sustainable water management for future generations as we 
pave this new path. 

7. Future directions 

The integration of AI and BDA offers numerous opportunities to 
further improve WRM as a result of the continuous development of 
technology. As these technologies continue to develop, their potential 
impacts on addressing complicated WRM challenges grow. This section 
outlines a number of promising future directions for applying AI and 
BDA to the WRM domain. Future applications of AI and BDA in WRM 
will likely make use of spatial and temporal data with a higher resolu
tion. With the use of remote sensing technologies, such as satellites and 
drones, it is possible to collect comprehensive data on water availability, 
land use changes, and ecosystem health. By combining these datasets 
with cutting-edge AI algorithms, decision-makers can obtain more pre
cise insights, allowing for more targeted and timely interventions. 

In the future of WRM, the proliferation of IoT devices capable of 
accumulating and transmitting real-time data will play a crucial role. 
These devices, which are imbedded in water infrastructure, ecosystems, 
and urban areas, can continuously provide data on water quality, 
discharge rates, and weather conditions, among other parameters. These 
streaming data can be processed by AI algorithms to provide immediate 
insights, allowing for expeditious responses to shifting conditions and 
facilitating proactive management. 

AI and BDA will continue to refine models for predicting extreme 
events like flooding, droughts, and water quality crises. By incorporating 
sophisticated techniques of machine learning and enhanced data inputs, 
these models are able to provide more accurate and reliable predictions. 
This will allow authorities to take preventative measures, lessening the 
impact on water systems and communities. Future applications will 
likely emphasize the integration of AI and BDA into decision support 
systems. These systems will provide decision-makers with an intuitive 
interface that synthesizes complex data and model outputs into action
able recommendations. Such platforms will increase the availability of 
data-driven insights and allow even non-specialists to make informed 
decisions in WRM. 

Future WRM will emphasize collaborative approaches incorporating 
multiple sectors and communities. AI and BDA can facilitate participa
tory decision-making by providing interactive data visualization and 
outcome modeling tools. These tools allow stakeholders to investigate 
different scenarios, comprehend trade-offs, and develop adaptive stra
tegies that balance diverse interests collectively. WRM models will 
progressively incorporate socioeconomic data derived from AI and BDA. 
These technologies can provide a comprehensive understanding of 
water demand, utilization patterns, and community impacts by 

Fig. 4. A schematic of application of the AI technique for WRM in real-scale (Reproduction with permission from Ref. [76]).  
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analyzing economic trends, demographic shifts, and behavioral pat
terns. This integrated approach will foster management strategies that 
are more inclusive and equitable. Future research could concentrate on 
techniques to improve the interpretability of AI models. As the 
complexity of AI algorithms increases, it becomes essential to ensure 
that decisions are transparent and intelligible. AI advancements that are 
explicable will allow decision-makers to trust and perceive the reasoning 
behind AI-driven recommendations. 

Efforts to adapt AI and BDA for tiny and limited-resource regions are 
acquiring momentum. Future directions will include the development of 
models that require fewer data inputs and computational resources, 
allowing these technologies to be effectively applied in regions with 
limited infrastructure. Concerns regarding data privacy, algorithmic 
biases, and equitable access to benefits must be addressed as AI, and 
BDA becomes increasingly integrated into WRM. Future directions will 
include the development of ethical frameworks and guidelines to ensure 
the application of these technologies in a responsible and equitable 
manner. 

In summary, the sustained integration of AI and BDA bears immense 
promise for the future of WRM. These technologies have the potential to 
transform the understanding, management, and conservation of water 
resources. As researchers, practitioners, and policymakers collaborate to 
investigate these future directions, the result will be water systems that 
are more resilient, sustainable, and adaptive to the benefit of both cur
rent and future generations. 
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[82] A. Pérez-Fargallo, et al., Domestic hot water consumption prediction models suited 
for dwellings in central-southern parts of Chile, J. Build. Eng. 49 (2022), 104024. 

[83] T. Yao, et al., The imbalance of the Asian water tower, Nat. Rev. Earth Environ. 3 
(10) (2022) 618–632. 

[84] M. Issaoui, et al., Membrane technology for sustainable water resources 
management: challenges and future projections, Sustain. Chem. Pharmacy 25 
(2022), 100590. 

[85] Y. Vasseghian, et al., Metal-organic framework-enabled pesticides are an emerging 
tool for sustainable cleaner production and environmental hazard reduction, 
J. Clean. Prod. 373 (2022), 133966. 

[86] Y. Yu, et al., The study of AI for predicting land use changes in an arid ecosystem, 
J. Geogr. Sci. 32 (4) (2022) 717–734. 

H. Kamyab et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S2590-1230(23)00693-X/sref34
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref34
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref35
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref35
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref35
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref37
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref37
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref39
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref39
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref40
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref40
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref40
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref41
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref41
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref42
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref42
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref42
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref43
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref43
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref43
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref24
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref24
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref44
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref44
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref45
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref45
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref45
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref46
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref46
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref46
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref47
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref47
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref47
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref48
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref48
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref50
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref50
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref50
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref51
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref51
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref51
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref53
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref53
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref53
https://doi.org/10.3390/su13169262
https://doi.org/10.1016/j.scs.2023.104610
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref54
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref54
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref54
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref55
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref55
https://doi.org/10.1016/j.ijforecast.2020.11.006
https://doi.org/10.1016/j.eiar.2023.107090
https://doi.org/10.1016/j.jwpe.2023.103949
https://doi.org/10.1016/j.jwpe.2023.103949
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref60
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref60
http://refhub.elsevier.com/S2590-1230(23)00693-X/optuunGxk404d
http://refhub.elsevier.com/S2590-1230(23)00693-X/optuunGxk404d
http://refhub.elsevier.com/S2590-1230(23)00693-X/optuunGxk404d
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref62
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref62
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref62
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref63
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref63
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref64
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref64
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref64
https://smartwatermagazine.com/blogs/parija-rangnekar/how-can-iot-help-water-management-system
https://smartwatermagazine.com/blogs/parija-rangnekar/how-can-iot-help-water-management-system
https://smartwatermagazine.com/blogs/parija-rangnekar/how-can-iot-help-water-management-system
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref19
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref19
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref19
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref66
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref66
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref66
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref72
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref72
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref67
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref67
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref67
https://doi.org/10.3390/s23010232
https://doi.org/10.3390/s23010232
https://doi.org/10.1016/j.iot.2022.100629
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref68
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref68
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref68
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref69
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref69
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref71
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref71
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref14
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref14
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref17
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref17
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref17
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref74
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref74
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref74
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref75
http://refhub.elsevier.com/S2590-1230(23)00693-X/sref75

	The latest innovative avenues for the utilization of artificial Intelligence and big data analytics in water resource manag ...
	1 Introduction
	2 Challenges arising to water resource management
	2.1 An overview
	2.1.1 Growth of population and urbanization
	2.1.2 Climate change
	2.1.3 Ecosystem degradation
	2.1.4 Water contamination
	2.1.5 Wasteful water use
	2.1.6 Absence of integrated administration
	2.1.7 Outdated facilities
	2.1.8 Limited stakeholder participation
	2.1.9 Legal and compliance obstacles
	2.1.10 Absence of data and tracking
	2.1.11 Economic pressures and limited resources
	2.1.12 Hydro-energy challenges

	2.2 Enhancing water resource management through AI and big data analytics
	2.2.1 Decision-making informed by data insights
	2.2.2 The use of predictive models for efficient planning
	2.2.3 Effectiveness of water allocation and conservation
	2.2.4 Systems for early warning of extreme events
	2.2.5 Management and restoration of ecosystems
	2.2.6 Engagement with stakeholders and transparency
	2.2.7 Adaptive strategies in confrontation with climate change
	2.2.8 Compliance and enforcement with regulations
	2.2.9 Drought management
	2.2.10 Flood management


	3 Innovations in AI for water resource management
	3.1 Different AI-based technologies applicable to water resource management
	3.1.1 Machine learning
	3.1.2 Deep learning
	3.1.3 Natural language processing (NLP)
	3.1.4 Computer vision
	3.1.5 Predictive analytics

	3.2 The applications of AI in water resource management

	4 Innovations in BDA for water resource management
	4.1 Big data analytics in water resource management
	4.1.1 Real-time monitoring of water resources
	4.1.2 Optimizing water allocation
	4.1.3 Improving water demand forecasting
	4.1.4 Detecting wastewater
	4.1.5 Enhancing water quality monitoring

	4.2 Different data sources that can be leveraged in water resource management
	4.2.1 Remote sensing
	4.2.2 IoT devices
	4.2.3 Social media
	4.2.4 Hydrological models


	5 The applications of AI and BDA in real-scale water resource management
	5.1 Integration of AI and BDA into water resource management
	5.2 The benefits and limitations

	6 Conclusions
	7 Future directions
	Declaration of competing interest
	Data availability
	References


